A Sift-lbp Image Retrieval Model Based on Bag-of-features

نویسندگان

  • Xiaoli Yuan
  • Jing Yu
  • Zengchang Qin
  • Tao Wan
چکیده

Despite progress in image retrieval by using low-level features, such as colors, textures and shapes, the performance is still unsatisfied as there are existing gaps between low-level features and high-level semantic concepts (semantic gaps). In this research, we propose a novel image retrieval system based on bag-of-features (BoF) model by integrating scale invariant feature transform (SIFT) and local binary pattern (LBP). We show that SIFT and LBP features yield complementary and substantial improvement on image retrieval even in the case of noisy background and ambiguous objects. Two new integration models are proposed: patch-based integration and image-based integration. By using a weighted Kmeans clustering algorithm, the image-based SIFT-LBP integration achieves the superior performance on a given benchmark problem comparing to other existing algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature integration analysis of bag-of-features model for image retrieval

One of the biggest challenges in content based image retrieval is to solve the problem of “semantic gaps” between low-level features and high-level semantic concepts. In this paper, we aim to investigate various combinations of mid-level features to build an effective image retrieval system based on the bag-offeatures (BoF) model. Specifically, we study two ways of integrating the SIFT and LBP ...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

Evaluating Classification Strategies in Bag of SIFT Feature Method for Animal Recognition

These days automatic image annotation is an important topic and several efforts are made to solve the semantic gap problem which is still an open issue. Also, Content Based Image Retrieval (CBIR) cannot solve this problem. One of the efficient and effective models for solving the semantic gap and visual recognition and retrieval is Bag of Feature (BoF) model which can quantize local visual feat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011